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Abstract

A typical frictionally excited pin on disk system is modeled as a basis for vibration control. The model is based on chosen

experimental setup parameters. The analysis incorporates normal, tangential and torsional degrees of freedom. The effect

of varying both the normal force and the pin stiffness on the response of the pin subsystem in all directions is investigated

numerically. A detailed parametric study shows that the operating condition namely the normal force and the rotational

speed have a remarkable influence on the response. A correlation between measured and calculated system response is

presented, that supports the validity of the presented model. The dynamic characteristics of the system, namely stiffness of

the pin in both normal and torsional direction, have no significant effect on its response, while its tangential stiffness has a

minor effect.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Friction-induced vibration, chatter, and squeal are serious problems in many industrial applications. Many
experimental and analytical studies have led to insight on the factors contributing to the brake squeal or to the
improvement of squeal in disk brakes of a specific type or in a particular make and model of automobile.
Experimental studies have accumulated a wealth of information about the nature of squeal, the vibration
modes therein, the wear of brake components, and frictional interactions in brakes. Analytical studies have
provided useful insights into how friction laws, geometry and the dynamics of brake components can lead to
squeal or instability in simple models of disk brakes. Finite elements have been used to try to extend these
insights to more accurate brake models. There is a large body of models devoted to brake squeal.

An early detailed analysis of a model for a squealing disk brake was presented by Jarvis and Mills [1]. Then,
models for squealing disk brakes have featured an increased number of degrees of freedom, increased
complexity, and often, more complex friction models. Many studies about friction mechanisms have been
reported.

Early work of Earles and Lee [2] featured experiments where a disk, contacted by a pin which is supported
by a flexible cantilever, is spun at a constant speed. They stated that the system stability is dependent on the
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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coefficient of friction. Earles and Badi [3] and Earles and Chambers [4,5] used pin on disk systems in which
two pins were acting on the disk to investigate and quantify the sprag-slip mechanism for squeal. The
investigations performed consisted of examining how the damping influenced squeal. In these works, a linear
stability analysis was performed on lumped parameter models of pin-disk systems in order to find the flutter
boundaries in parameter space. After the constraints had been incorporated, these models were generally
linear three- or five-degree-of-freedom systems. They found that damping in the pin assembly (corresponding
to damping of the brake pad assembly in a disk brake) could enlarge the unstable regions under certain
circumstances, while disk damping always reduced these regions.

From the perspective of computational mechanics, Oden and Martins [6] presented comprehensive reviews
of friction models. They showed that the computation of the true contact can be modeled through direct
numerical simulations.

The experimental tests on a pin-on disk type sliding system by Dweib and D’Souza [7] have indicated that,
for a constant sliding speed, the friction force depends on the normal load. They showed that according to the
value of the normal load, there are four different regimes, namely: steady-state, nonlinear, transient friction
regions and self-excited vibration region. Dweib and D’Souza [8] presented, based on experimental results an
empirical model of contact mechanics. This empirical model has been developed for the region of self-excited
vibrations. Their results concluded that, the mechanism that causes self-excited vibrations in their model is the
coupling between its degrees of freedom.

Ibrahim [9], addressed friction and contact mechanics. He summarized the principal results pertaining to
factors affecting friction between sliding surfaces. According to him, the occurrence of stick-slip is
unpredictable and is attributed to the fact that the slope of the friction-speed curve is not constant but varies
randomly with contamination, surface finish, miss-alignment of sliding surfaces, and other factors.
He classified vibrations in the mechanical systems into three categories: stick-slip, vibrations induced by
random surface irregularities and quasi-harmonic self-excited oscillations. Ibrahim et al. [10] measured the
average normal and friction forces acting on a friction element (in the form of a dowel) which was placed in
contact with a rotating disk. Both the rotation speed and direction of the disk were variable, and their tests
were performed at constant rotational speeds. They noted several interesting features. Most notably, neither
the normal force nor the kinetic coefficient of friction were constant. In fact, these authors reported that the
friction and normal forces acting on the friction element are random and non-Gaussian processes. They also
developed a single-degree-of freedom model for the vibration of the friction element. This model was
subsequently analyzed in further detail by Qiao and Ibrahim [11]. Ibrahim [12] has discussed the relationships
between the results of Ibrahim et al. [10] and Qiao and Ibrahim [11] and role of random vibrations in the
generation of brake noise.

Considering the acoustics of friction-induced vibration, an illuminating discussion has been reported by
Akay [13]. He attempted to bring together acoustics and friction by exposing many of the topics that are
common to both fields. He affirmed that modeling of friction-induced vibrations and friction damping in
mechanical systems requires an accurate description of friction for which only approximations exist. An
experimental investigation of friction-induced noise and vibration using a pin-on-disk set-up was presented by
Emira and Uras [14]. Their results indicated that the average normal force has a significant effect on the
system response that caused generating noise under self-excited vibration. They showed that introducing
external excitation to their system has a positive influence on the system response measured in terms of system
noise. Kinkaid et al. [15] presented a detailed revision of the pin-on-disk friction models. He demonstrated a
revision of most of the models that have appeared in the literature, and summarized some of them. He also
pointed out the inter-relationships between these models. In these models, a linear stability analysis was
performed in order to predict the onset of instability which, according to most researchers, have been
correlated to the occurrence of squeal.

Considering the dynamic instabilities of the pin-on-disk system, Mote [16] studied the case of a stationary
flexible disk subjected to a rotating load. On the other hand, Iwan and Moeller [17] studied the dynamic
instability of a rotating flexible disk subjected to a stationary load. For both cases, either of which is
rotating, the system may become unstable at certain values of the mass–spring–damper system. Further
investigation of factors affecting resonance of stationary disk excited by a rotating load, were carried out by
Shen [18]. Tworzydlo et al. [19] presented a numerical study of dynamic instabilities of mechanical systems
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with friction-induced vibrations, self-excited oscillations and stick-slip motion. They modeled a typical pin-
on-disk apparatus as the assembly of rigid bodies with elastic connections to represent the properties of the
interface. In the analysis of stability of frictional sliding, they followed the general procedure used by Oden
and Martins [6]. Shin et al. [20] adopted a two degrees-of-freedom model, where the disk and the pad are
modeled as single modes connected by a sliding friction interface. They investigated the detailed dynamical
behavior of the model for various combinations of both friction and system parameters.

Mottershead has published a series of articles on instabilities in annular disks to which a rotating system of
a discrete mass-dashpot-spring and an accompanying frictional follower force was applied. A thorough review
of this work is summarized in the review article by Mottershead [21] and its relationship to a floating caliper
brake system is outlined by Ouyang and Mottershead [22]. Chan et al. [23] presented a theory of brake squeal
which is based on the splitting of the frequency of the doublet modes in the symmetric disk when a friction
force is applied, this splitting could lead to flutter which is associated to brake squeal. They considered a
clamped elastic annular disk which is loaded (at a discrete number of points) by a tangential follower force
traction which is related to the normal pressure by the coefficient of friction. Using a finite element model for
the disk, they developed a model for the linear vibrations of the stationary disk subject to the tangential
follower forces. Chan et al. [24] investigated the instabilities in annular disks to which a rotating system of a
discrete mass-dashpot-spring and an accompanying frictional follower force was applied. Their model is
related, by a coordinate change, to the dual model of a rotating plate acted upon by a fixed load system,
provided the simple plate model to be used. In other words, the deformation induced in the plate by the rigid
rotation is not considered in the dual model.

Mottershead and Chan [25] showed that follower friction force led to flutter instability indicated by the
combining of eigenvalues using a distributed frictional load. Mottershead [21] analyzed the instabilities due to
frictional follower forces and friction-induced parametric resonance. An extension of this study to the case
with negative friction-velocity slope is also carried out by Ouyang et al. [26]. They investigated parametric
resonance under a sector load rotating on an annular disk (with friction) and they identified combination
resonance and how it changes when friction has a negative slope with respect to velocity. They also addressed
the tendency of a disk to generate noise when the natural frequencies of in-plane and bending vibrations exist
close to each other. as well as self-excited vibrations of a circular plate with friction forces acting on its edge to
model squeal in drum brakes [27]. These papers focus on the parametric resonance induced in the disk by the
rotating system.

Ouyang et al. [28–30] presented a notable work in the vein of assuming constant friction coefficient and self-
excited vibrations. They developed a finite element model for the brake pad assemblies, calipers and piston of
a floating caliper disk brake and a plate model for the brake rotor. They considered the effects of the rotation
of the disk rotor. In their finite element model, they considered the flexibilities of the rotor and the brake pad
assemblies. As these bodies deform during the vibrations of the disk brake system, a variation in the normal
forces between them occurs. This in turn causes a variation in the friction forces even if the coefficient of
friction is constant.

A broad illustration of the effect of some of the geometric and operating parameters on the friction-induced
vibration of the pin-on-disk system is the ultimate aim of this study, with a future thought of using passive
control methodology to limit or reduce its vibration. A mathematical model in which the pin is considered as
an elastic element with stiffness k1, k2 and k3 while the disk is of higher rigidity is introduced. The predicted
system response is correlated to experimental system response measured in terms of system noise [14].

In this present work the responses of the rotating pin in three directions are investigated in terms of speed of
rotation, applied normal force and its stiffness.

2. Pin-on-disk system modeling

An analytical model of the rotating pin, of the pin-on-disk system shown in Fig. 1, is presented. The pin axis
is normal to the disk surface. The pin represented by a mass m and a moment of inertia I about a central axis
through its mass center O, has the displacements X, Y and f. The rotation f is associated with pin’s torsional
stiffness k3. The tip of the pin is distanced L vertically from O (mass center of the pin). The spherical pin tip
and the rigid stationary disk surfaces are hardened to 58-62 HRC with surface roughness average (Ra) of
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Fig. 1. Pin-on-disk system modeling.
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0.025. As shown in Fig. 1(a), a set of fixed axes QXYZ are coincident with the set of moving coordinate axes
Oxyz, which are attached to the pin subsystem. The direction of both the friction and the normal forces on the
pin’s tip are the x- and the y-axis, respectively. The three degrees of freedom correspond to the translations in
both the normal and frictional directions and torsional rotation about the z-axis.

It is assumed that the relative sliding between the pin and the disk is unidirectional and finite at all time.
Hence, the friction force always acts in the same direction. The reacted normal force on the pin’s tip acts
vertically upwards. It is assumed that these directions are fixed at all times. It is also assumed that the contact
between the pin and the disk is maintained at all times. The stiffness k1 and k2 are attached from the points A

and B, respectively. Fig. 1(b) shows the pin subsystem deflected from its static position. From the geometric
compatibility of the pin subsystem, the displacements Uy and Ux of points A and B, are given by

Ux ¼ X þ Cð1� cos fÞ,

Uy ¼ Y þHð1� cos fÞ. ð1Þ

The equations of motion in the X, Y and f directions are written as follows:

m €X þ k2Ux � mN ðtÞ ¼ 0,

m €Y þ k1Uy þN ðtÞ ¼ 0,

I €fþ ðk3 þ k2XC þ k1YH �N ðtÞLÞf� mN ðtÞL ¼ 0. ð2Þ

Substituting Eq. (1) into Eq. (2) and for very small f, such that sinfCf and cosfC1, then Eq. (2) becomes

m €X þ k2X � mN ðtÞ ¼ 0,

m €Y þ k1Y �N ðtÞ ¼ 0,

I €fþ ðk3 þ k2XC þ k1YH �N ðtÞLÞf� mN ðtÞL ¼ 0. ð3Þ

According to Qiao and Ibrahim [11] and the reported results of Emira and Uras [14], the dependence of the
friction coefficient on the relative sliding velocity, shown in Fig. 2, may be represented by the cubic
polynomial:

m ¼ a0 sgn ðV � wÞ þ a1ðV � wÞ þ a3ðV � wÞ3, (4)
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Fig. 2. Coefficient of friction versus sliding velocity (data from Ref. [14]): ( ) curve fitting and ( ) experimental.
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where V is the pin rotational velocity at the contact point, and w is the velocity of the frictional element (the
velocity response of the pin due to its flexibility), at the same point of contact. From the model geometry
shown in Fig. 1, the displacement of the pin tip is ðX þ L sin fÞ, then the velocity is given by w ¼ _X þ L _f.

The coefficients a0, a1 and a3 are mainly governed by the conditions of the sliding surfaces and their material
properties. By applying the least-square curve fitting to the experimental data obtained by Emira and Uras
[14], one can get the cubic polynomial coefficients as follows: a0 ¼ 0:649, a1 ¼ �0:623 and a3 ¼ 0:297.

In order to transform each of the second-order DE, namely Eq. (3), into two simultaneous first-order DE,
the following expressions are introduced:

u ¼ _X ; v ¼ _Y and y ¼ _f. (5)

Consequently w ¼ uþ Ly, _u ¼ €X , _v ¼ €Y and _y ¼ €f. Substituting these values in Eq. (3), and rearranging
gives

_u ¼
mN ðtÞ

m
�

k2

m
X ,

_v ¼ �
k1

m
Y �

N ðtÞ

m
,

_y ¼
mN ðtÞL

I
�

f
I
ðk3 þ k2XC þ k1YH þN ðtÞLÞ. ð6Þ

The setup dynamic characteristics parameters used, abstracted from experimental investigation by
Emira and Uras [14], are as follows: the normal stiffness k1 ¼ 15.44� 103Nm�1, the tangential stiffness
k2 ¼ 2.465� 105Nm�1 and the torsional stiffness k3 ¼ 67.275Nmrad�1. The mass of the pin m ¼ 0:625 kg
and the range of the average normal force N ðtÞ ¼ ð25255ÞN. The geometric dimensions of the pin are:
C ¼ 0.01m, L ¼ 0.09m and H ¼ 0.0836m. The mass moment of inertia of the pin I ¼ 6:69� 10�4 kgm2. The
rotating velocities of the pin considered are 50, 100 and 150 rev/min.

3. Solution of equations of motion

The numerical solution of the sliding system can be obtained by applying the central difference method with
the initial conditions u0;X 0; v0;Y 0; y0;f0 as mentioned in Ref. [31]. Denoting the response as: Xi ¼ X(t ¼ ti),
Xi+1 ¼ X(t ¼ ti+1) and Xi�1 ¼ X(t ¼ ti�1), respectively. These notations apply for response in all directions.

To start the numerical calculation (at time t ¼ t1 ¼ Dt) the first value of each of the state variables is
calculated using a first-order Taylor expansion as X 1 ¼ X 0 þ Dt _X 0, Y 1 ¼ Y 0 þ Dt _Y 0 and f1 ¼ f0 þ Dt _f0,
etc. Then, the values of the state variables at time t ¼ t2 ¼ t1 þ Dt and higher are calculated using the central
difference method, where Eq. (5) can be rewritten as: ui ¼ X iþ1 � X i�1=2Dt, vi ¼ Y iþ1 � Y i�1=2Dt and
yi ¼ fiþ1 � fi�1=2Dt, which can be rearranged as follows:

X iþ1 ¼ 2Dtui þ X i�1; Y iþ1 ¼ 2Dtvi þ Y i�1 and fiþ1 ¼ 2Dtyi þ fi�1 (7)
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and Eq. (6) is rewritten as follows:

uiþ1 � ui�1

2Dt
¼

mN ðtÞ

m
�

k2

m
X i,

viþ1 � vi�1

2Dt
¼ �

k1

m
Y i �

N ðtÞ

m
,

yiþ1 � yi�1

2Dt
¼

mN ðtÞL

I
�

fi

I
ðk3 þ k2X iC þ k1Y iH �N ðtÞLÞ, ð8Þ

where m ¼ a0 sgn ðV � ui � LyiÞ þ a1ðV � ui � LyiÞ þ a3ðV � ui � LyiÞ
3.

Eq. (8) is rearranged in the following form:

uiþ1 ¼
2DtmN ðtÞ

m
�

2Dt k2

m
X i þ ui�1,

viþ1 ¼
�2Dt k1

m
Y i �

2DtN ðtÞ

m
þ vi�1,

yiþ1 ¼
2DtmN ðtÞL

I
�

2Dt

I
ðk3 þ k2X iC þ k1Y iH �N ðtÞLÞfi þ yi�1. ð9Þ

Then the equations which represent the state variables of the system, namely Eqs. (7) and (9) are rearranged
in the following matrix forms:

Riþ1 ¼ ARi þ BRi�1 þ P, (10)

where

Riþ1 ¼

X iþ1

Y iþ1

fiþ1

uiþ1

viþ1

yiþ1

2
6666666664

3
7777777775

; Ri ¼

X i

Y i

fi

ui

vi

yi

2
6666666664

3
7777777775

; Ri�1 ¼

X i�1

Y i�1

fi�1

ui�1

vi�1

yi�1

2
6666666664

3
7777777775

; A ¼

0 0 0 A14 0 0

0 0 0 0 A25 0

0 0 0 0 0 A36

A41 0 0 0 0 0

0 A52 0 0 0 0

0 0 A63 0 0 0

2
6666666664

3
7777777775

,

B ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
666666664

3
777777775
; and P ¼

0

0

0

P14

P15

P16

2
6666666664

3
7777777775

.

The values of the different elements are as follows:

A14 ¼ A25 ¼ A36 ¼ 2Dt; A41 ¼ �2Dtk2=m; A52 ¼ �2Dtk1=m,

A63 ¼ �2Dtðk3 þ k2CX i þ k1HY i �N ðtÞLÞ
�

I ,

P14 ¼ 2Dt N ðtÞ a0 sgnðV � ui � LyiÞ þ a1ðV � ui � LyiÞ þ a3ðV � ui � LyiÞ
3

� ��
m,

P15 ¼ �2Dt N ðtÞ
�

m and

P16 ¼ �2Dt N ðtÞL a0 sgnðV � ui � LyiÞ þ a1ðV � ui � LyiÞ þ a3ðV � ui � LyiÞ
3

� ��
I .
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4. Results and discussions

The study investigates the effect of varying both the normal force and the stiffness of the pin, on the steady-
state response. In this context the ‘‘steady-state response’’ stands for the response at the end time domain used.
Primary investigations showed that the oscillatory response of the pin in all directions completely disappears
after about 3.5 s. For that reason a time domain of 6 s, was used to ensure that the system has almost reached a
steady-state shape. All the results were taken at the end of the chosen time interval for reason of comparison.

The studied range of variation of the dynamic characteristics; namely stiffness, is within 720% of the
experimental setup parameters. The values of the applied normal force vary between 25 and 55N, at three
different rotational speeds.

The equations of motion of the numerical model are solved using the central difference method, with chosen
time domain T ¼ 6 s. Achieving stability using the central difference scheme [31], implies using a time step Dt

smaller than a critical value Dtcr ¼ t=10, where t is the periodic time of the upper frequency of interest (2 kHz).
Fig. 3. Effect of varying the normal force on system response in the three directions: (a) vertical, (b) horizontal and (c) torsional, at

100 rev/min, ( ) 55N, ( ) 40N and ( ) 25N.
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4.1. Effect of changing the normal force on the response

Fig. 3 displays the dynamic response, at three different values of the normal force 25, 40 and 55N, in three
directions: vertical, tangential and torsional at 100 rev/min. The figure shows that; in general, increasing the
normal force increases the system steady-state response in all directions. It also shows that a dominant self-
excited vibration occurs near the middle of the taken time period as a result of increasing the normal force up
to 55N.

Fig. 4 shows the relationship between the steady-state amplitude of response in the normal, tangential
and torsional directions versus the normal force, at three different rotational speeds namely, 50, 100 and
150 rev/min. At 100 rev/min rotational speed, increasing the normal force by 20%, increases the normal
amplitude by around 21%, the tangential amplitude by 8% and the torsional amplitude by 16%. These results
indicate that the normal force has a great influence on the response of the system in the three directions. The
figure shows that increasing the rotational speed, decreases the system response in the three directions.
Fig. 4. System steady-state response; versus normal force, in the three directions at different rotational velocities: (a) vertical,

(b) horizontal and (c) torsional, at three rotational velocities, ( ) 50 rev/min, ( ) 100 rev/min and ( ) 150 rev/min.
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Fig. 6. Effect of varying normal stiffness k1 on system response; at 35N applied normal force and 100 rev/min, in the three directions:

(a) vertical, (b) horizontal and (c) torsional: ( ) �20%, ( ) setup value of k1 and ( ) +20%.

Fig. 5. Correlation between calculated system response ( ) in the normal direction and measured sound pressure level ( )

[14], at 100 rev/min.

M.N.A Emira / Journal of Sound and Vibration 300 (2007) 916–931924
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As explained in Ref. [32], the sound pressure level is related to the vibration parameters of a specific
vibrating surface. A correlation is established between the measured sound pressure level [14], and the
corresponding numerically predicted system vibrational response in the normal direction. The system response
in the normal direction and the near field measured sound pressure level is shown in Fig. 5. A high correlation
between the two quantities is observed in the figure. This correlation gives a high indication of the correctness
of the prediction of the presented model.

4.2. Effect of changing the normal stiffness on the response

Fig. 6 shows the effect of changing the normal stiffness k1 on the time history of normal, tangential and
torsional response amplitudes, at rotational speed of 100 rev/min and a chosen normal force valued 35N. In
Fig. 6(a), it can be noticed that, as the normal stiffness increases, the steady-state amplitude of response in the
normal direction decreases. Fig. 6(b) shows the time history of the tangential response at different values of
Fig. 7. System steady-state response versus normal stiffness at 100 rev/min; in the three directions: (a) vertical, (b) horizontal and

(c) torsional, at three applied normal forces, ( ) 45N, ( ) 35N and ( ) 25N.
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normal stiffness. In this case, changing the normal stiffness does not change the tangential response amplitude.
Fig. 6(c) shows a decrease in the steady-state amplitude of response in the torsional direction as the normal
stiffness increases.

Fig. 7 shows the response versus normal stiffness k1 at three different values of the normal force
at 100 rev/min. In Fig. 7(a), it is shown that as the normal stiffness increases by 10%, the steady-state
amplitude of response in the normal direction decreases by around 9%. The tangential amplitude of
response is not affected by the change in the normal stiffness, as shown in Fig. 7(b). The steady-state
amplitude of response in the torsional direction decreases by around 2.5% due to an increase of 10%
in the normal stiffness as shown in Fig. 7(c). Generally, these results show that changing the normal
stiffness affects the response in both normal and torsional directions only, with a reflective effect on the
normal response.
Fig. 8. Effect of varying tangential stiffness k2 on system response; at 100 rev/min and 35N applied normal force, in the three directions:

(a) vertical, (b) horizontal and (c) torsional, ( ) �20%, ( ) setup value of k2 and ( ) +20%.
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4.3. Effect of changing the tangential stiffness on the response

The effect of changing the tangential stiffness k2 in a range of 720% of the setup value, is investigated.
Fig. 8 shows the time history of normal, tangential and torsional amplitudes of response, due to changing of
the tangential stiffness k2, at rotational speed of 100 rev/min and normal force of 35N. It can be seen from
Fig. 8(a) that changing the tangential stiffness has no effect on the normal response. An inverse relation
between the change in the tangential stiffness and the steady-state amplitude of response in both the tangential
and torsional directions is shown in Figs. 8(b) and (c).

Fig. 9 shows the response versus tangential stiffness k2 at three different values of the normal force at
100 rev/min. In Fig. 9(a), it is found that the amplitude of response in the normal direction remains without
any change. Fig. 9(b) shows that the steady-state amplitude of response in the tangential direction decreases by
around 5.5% for a 10% increase of the tangential stiffness. A similar change in the tangential stiffness, leads to
a decrease of the steady-state amplitude of response in the torsional direction by around 3.5%, as shown in
Fig. 9(c).
Fig. 9. System steady-state response versus tangential stiffness at 100 rev/min; in the three directions: (a) vertical, (b) horizontal and

(c) torsional, at three applied normal forces: ( ) 45N, ( ) 35N and ( ) 25N.
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Fig. 10. Effect of varying torsional stiffness k3 on system response; at 100 rev/min and 35N applied normal force, in the three directions:

(a) vertical, (b) horizontal and (c) torsional. ( ) �20%, ( ) setup value of k3 and ( ) +20%.
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4.4. Effect of changing the torsional stiffness on the response

The effect of changing the torsional stiffness k3 on the time history of normal, tangential and torsional
response amplitudes, at rotational speed of 100 rev/min and normal force of 35N, is shown in Fig. 10.
Figs. 10(a) and (b) show that there is no change in both normal and tangential amplitude of response due to
changing the torsional stiffness. On the other hand, Fig. 10(c) shows that the change of the torsional stiffness
inversely affects the steady-state torsional amplitude of response.

In Fig. 11, the effect of varying the torsional stiffness k3 on the steady-state response, at three different
normal forces is shown. Figs. 11(a) and (b) show that changing the torsional stiffness has no effect on both
normal and tangential amplitude of steady-state response. On the other hand an increase of 10% of the
torsional stiffness leads to a decrease of around 8% in the torsional amplitude of steady-state response. Thus,
changing the torsional stiffness affects the response in the torsional direction only.
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Fig. 11. System response versus torsional stiffness at 100 rev/min; in the three directions: (a) vertical, (b) horizontal and (c) torsional, at

three applied normal forces: ( ) 45N, ( ) 35N and ( ) 25N.
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5. Conclusions

Based on experimental data, a three-degrees-of-freedom model of a pin-on-disk system is presented. The
model is used to investigate the effect of varying both the normal force and the system stiffness parameters on
the system response in three directions at different speeds.

It is found that at any specific speed, increasing the normal force increases the calculated system response.
This is true for the response in all the three directions. Also, increasing the rotational speed of the pin increases
the amplitude of system response in the three directions. The validity is proved through the good correlation
between the measured sound pressure level and the corresponding calculated system vibrational response in
the normal direction.

The change in amplitude of system response is inversely related to changes into stiffness parameters of the
system. The change in the normal stiffness influences the amplitude of system response in both normal and
torsional directions, while changing the tangential stiffness affects the response in both tangential and
torsional directions. On the other hand, varying the torsional stiffness influences the amplitude of system
response in the torsional direction only. It is worth to mention that a specific stiffness profoundly affect the
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response in its direction. For example, the change in the normal stiffness affects both the normal and the
torsional response, with a profound effect on the normal response. So, system geometry and material should
be considered during design process regarding its effect on the system dynamic response.

As the effect of changing the different operating parameters on the system response is known, so the
thought of controlling such responses is a definite aim for a future work via various means such as passive
control.
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